- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Campos, Marcelo (3)
-
Jenssen, Matthew (3)
-
Michelen, Marcus (3)
-
Sahasrabudhe, Julian (3)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Campos, Marcelo; Jenssen, Matthew; Michelen, Marcus; Sahasrabudhe, Julian (, Forum of Mathematics, Pi)
-
Campos, Marcelo; Jenssen, Matthew; Michelen, Marcus; Sahasrabudhe, Julian (, Proceedings of the American Mathematical Society)Let M n M_n be drawn uniformly from all ± 1 \pm 1 symmetric n × n n \times n matrices. We show that the probability that M n M_n is singular is at most exp ( − c ( n log n ) 1 / 2 ) \exp (-c(n\log n)^{1/2}) , which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of exp ( − c n 1 / 2 ) \exp (-c n^{1/2}) on the singularity probability, our method is different and considerably simpler: we prove a “rough” inverse Littlewood-Offord theorem by a simple combinatorial iteration.more » « less
An official website of the United States government
